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Abstract

Background: Cardiovascular disease remains the leading cause of mortality worldwide. Cardiac fibrosis impacts the underlying
pathophysiology of many cardiovascular diseases by altering structural integrity and impairing electrical conduction. Identifying
cardiac fibrosis is essential for the prognosis and management of cardiovascular disease; however, current diagnostic methods
face challenges due to invasiveness, cost, and inaccessibility. Electrocardiograms (ECGs) are widely available and cost-effective
for monitoring cardiac electrical activity. While ECG-based methods for inferring fibrosis exist, they are not widely used due to
accuracy limitations and the need for cardiac expertise. However, ECGs shows promise as a target for machine learning (ML)
applications in fibrosis detection.

Objective: This study aims to synthesize and critically evaluate the current state of ECG-based ML approaches for cardiac
fibrosis detection.

Methods: We conducted a scoping review of research in ECG-based ML applications to identify cardiac fibrosis. Comprehensive
searches were performed in PubMed, IEEE Xplore, Scopus, Web of Science, and DBLP databases, including publications up to
October 2024. Studies were included if they applied ML techniques to detect cardiac fibrosis using ECG or vectorcardiogram
data and provided sufficient methodological details and outcome metrics. Two reviewers independently assessed eligibility and
extracted data on the ML models used, their performance metrics, study designs, and limitations.

Results: We identified 11 studies evaluating ML approaches for detecting cardiac fibrosis using ECG data. These studies used
various ML techniques, including classical (8/11, 73%), ensemble (3/11, 27%), and deep learning models (4/11, 36%). Support
vector machines were the most used classical model (6/11, 55%), with the best-performing models of each study achieving
accuracies of 77% to 93%. Among deep learning approaches, convolutional neural networks showed promising results, with one
study reporting an area under the receiver operating characteristic curve (AUC) of 0.89 when combined with clinical features.
Notably, a large-scale convolutional neural network study (n=14,052) achieved an AUC of 0.84 for detecting cardiac fibrosis,
outperforming cardiologists (AUC 0.63-0.66). However, many studies had limited sample sizes and lacked external validation,
potentially impacting the generalizability of the findings. Variability in reporting methods may affect the reproducibility and
applicability of these ML-based approaches.

Conclusions: ML-augmented ECG analysis shows promise for accessible and cost-effective detection of cardiac fibrosis.
However, there are common limitations with respect to study design and insufficient external validation, raising concerns about
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the generalizability and clinical applicability of the findings. Inconsistencies in methodologies and incomplete reporting further
impede cross-study comparisons. Future work may benefit from using prospective study designs, larger and more clinically and
demographically diverse datasets, advanced ML models, and rigorous external validation. Addressing these challenges could
pave the way for the clinical implementation of ML-based ECG detection of cardiac fibrosis to improve patient outcomes and
health care resource allocation.

(JMIR Cardio 2024;8:e60697) doi: 10.2196/60697
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Introduction

Background
Cardiovascular disease continues to be a significant global health
burden, leading to 19.1 million deaths in 2022, making it the
leading cause of mortality worldwide [1]. Globally, mortality
from cardiovascular diseases has steadily risen from 1990 to
2021, with a 75% increase in deaths from ischemic heart disease
and a 47% increase in death from stroke [1]. Cardiac fibrosis,
also known as cardiac or myocardial scar, forms the underlying
pathophysiological basis of numerous cardiovascular diseases.
Fibrotic tissue impairs electrical conduction throughout the
heart, including sinoatrial node signal generation, downstream
electrical conduction, and muscular contraction leading to
arrhythmogenicity, impaired cardiac output, and ultimately
systemic disease [2-5].

Identification of cardiac fibrosis is an important prognostic
factor, yet its identification remains a challenge despite various
existing diagnostic methods due to resource limitations and
testing constraints. The gold standard for cardiac fibrosis
detection is endocardial biopsy which provides high specificity.
However, endocardial biopsies are invasive, resource-intensive,
prone to sampling bias, and risk further cardiac injury with
adverse outcomes [6]. An alternative approach is to perform
echocardiography, which, while noninvasive and accessible,
has limitations in specificity and sensitivity [7].
Contrast-enhanced computed tomography is more readily
available but evidence is preliminary for application in the
identification of cardiac fibrosis [8]. The current widely used
noninvasive imaging modality is cardiac magnetic resonance
(CMR) with delayed gadolinium enhancement, also referred to
as late gadolinium enhancement (LGE). While LGE-CMR offers
high spatial resolution for scar characterization, it is
cost-intensive and difficult to access [7]. To date, LGE-CMR
has been most commonly used for facilitating the identification
and quantification of ventricular fibrosis, although its use for
atrial fibrosis is becoming more commonplace [9].

Considering the limitations of existing methods, there is a need
for novel, noninvasive, low-cost, and highly accessible
techniques for the detection, quantification, and characterization
of cardiac fibrosis. One such identified avenue is
electrocardiograms (ECGs), a widely available, inexpensive,
and noninvasive technology used to document the electrical
activity of the heart using a set of superficial electrodes [10].
Given ongoing human and imaging-resource constraints in
medical settings, there has been a focus on noninvasive methods
to streamline diagnosis and treatment. Electrophysiological data

from ECGs can be used to infer structural and cardiac
abnormalities, as with hypertrophy or ischemia. ECGs provide
a particular advantage for the identification of cardiac fibrosis
due to their noninvasiveness and accessibility in a constrained
environment. Various ECG features have historically been used
to identify cardiac fibrosis, with fragmented QRS (fQRS) and
the calculation of a Selvester score being the most studied
approaches [11].

The fQRS is traditionally assessed by identifying specific ECG
features across adjacent leads, often linked to uncoordinated
conduction through scarred myocardium [12]. While fQRS
shows independent prognostic value for adverse cardiac events,
heart failure, and mortality and has been proposed as a tool for
assessing intervention eligibility, its clinical utility is limited
[13-17]. Meta-analyses have reported a pooled sensitivity of
68.4% and specificity of 80.5% for detecting cardiac fibrosis;
however, performance varied across populations and pathologies
[18]. The fQRS is also evident in patients without fibrosis,
showing low negative predictive value and poor sensitivity in
some conditions, such as coronary artery disease [19-21]. It
remains a nonspecific marker unable to precisely localize
fibrosis [22]. Emerging techniques, such as QRS
microfragmentation analysis through advanced signal
processing, aim to improve the diagnostic accuracy of fQRS
[23]. However, fQRS has not yet proven to be independently
reliable for definitive scar identification.

Another manual method, the Selvester score, is a quantitative
method for estimating left ventricular fibrosis using a standard
12-lead ECG. First introduced in 1972, it was validated through
anatomical analysis and has since evolved to refine its criteria
and adjust for confounding ECG factors [24,25]. Each point on
the Selvester score represents a specific percentage of the left
ventricular mass affected by fibrosis [26]. Studies comparing
the Selvester score to LGE-CMR showed a moderate diagnostic
performance, with an area under the receiver operating curve
(AUC) of 0.66 and a QRS score-to-imaging Spearman
correlation of 0.42 [27]. Sensitivity and specificity varied with
different score thresholds; a score ≥1 had a sensitivity of 98.3%
but low specificity (16.7%), while a score ≥5 showed moderate
sensitivity (67.2%) and specificity (50%) [27]. The Selvester
score also demonstrated prognostic value, with an association
between higher scores and mortality (hazard ratio 1.16; P=.01)
[27]. However, the score tends to overestimate fibrosis,
particularly in individuals with conduction abnormalities and
may lack prognostic value in some populations [28,29]. Its
utility varies based on the population studied, and further
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research is necessary to assess its clinical applicability across
different diagnostic groups.

While both methods, the fQRS complexes and the Selvester
score, show potential for detecting cardiac fibrosis from ECG
graphs, they are limited by the need for manual interpretation
by clinicians, making them susceptible to diagnostic errors.
Efforts to automate these processes, such as the algorithm by
Bono et al [30] for Selvester scoring, achieved high accuracy
(94%) compared to manual methods. However, both manual
and automated approaches still face challenges. ECGs have
become a popular target for computational analysis, particularly
in the realm of artificial intelligence (AI) due to the increasing
availability of data. Within AI, machine learning (ML) methods
have become a dominant force for data-driven approaches. ML
models leverage massive computational power to analyze large
ECG datasets and can identify novel patterns that are difficult
to discern by traditional human-derived methods.

Applications of ML to ECG analysis are expanding in their
scope including electrophysiology for classification of cardiac
abnormalities, risk stratification, prognostication, and therapeutic
guidance [31]. Model evaluations for classifying cardiac
electro-pathophysiologic changes from ECG have produced
sensitive and specific models for cardiac contractile dysfunction,
electrolyte disturbances, hypertrophic cardiomyopathy, and
arrhythmias [32-34]. For example, a deep learning model for
the identification of left ventricular dysfunction obtained
sensitivity, specificity, and accuracy of 93.0%, 86.3%, and
85.7%, respectively. Interestingly, when this model incorrectly
identified dysfunction, these individuals were more likely to
develop left ventricular dysfunction over the study follow-up.
This indicates the potential of ML models to identify subclinical
diseases or for screening. However, research focused specifically
on cardiac fibrosis detection using ML is limited, and further
exploration is needed to assess the clinical utility of these tools
for fibrosis localization and quantification. Expanding on recent
studies and methodologies that incorporate ML for fibrosis
detection will provide a more comprehensive understanding of
its potential in clinical practice.

Objective
Despite notable advancements in ML within cardiac
electrophysiologic analysis, there remains a substantial gap in
the application of focused ML techniques. This gap limits the
full potential of ML-based methods to enhance diagnostic
precision, optimize resource allocation, and improve patient
outcomes. Therefore, a thorough review of current ML
applications in ECG analysis for cardiac fibrosis is imperative
to consolidate existing knowledge, identify effective strategies,
and guide future research toward clinically viable solutions that
can facilitate prompt diagnosis and better resource prioritization.

Methods

This research focuses on the application of ML to cardiac
fibrosis detection from ECGs. To capture the breadth of
literature, we conducted a systematic search aligned with
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-analyses; Multimedia Appendix 1).

Eligibility Criteria
Given the variability in publishing standards in engineering,
computer science, and medicine, we considered both journal
publications and conference papers. Preliminary conference
abstracts with insufficient methodological detail or no
corresponding papers were not included. Inclusion criteria were
studies that (1) applied ML methods to predict the presence,
magnitude, or location of cardiac fibrosis; (2) used ECG or
vectorcardiogram (VCG) input data; (3) included information
on model development, validation, and outcome metrics; and
(4) were published in English. Studies were excluded if (1) ML
applications did not include identification of cardiac fibrosis
detection; (2) there was insufficient methodological detail or
were not yet peer-reviewed (eg, conference abstracts, letters,
case reports, or preprints); and (3) there was a primary reliance
on imaging or non-ECG diagnostics for fibrosis identification.
When multiple publications were reported on the same study,
these were considered collectively, and all relevant results were
reported together.

Information Sources
Systematic search strategies were conducted in PubMed, IEEE
Xplore, Scopus, Web of Science, and DBLP computer science
bibliography to ensure all major biomedical journals and ML
journals and conferences were searched. To ensure all relevant
literature was identified in this relatively new research area,
authors were invited to share additional studies meeting
the criteria. The search was completed in October 2024.

Search Strategy
Key terms were identified through a preliminary review of the
literature and discussions with authors (JH, AM, AM-H, and
RT). Each search consisted of 3 elements: cardiac
electrodiagnostic methods (eg, “electrocardiogram”), cardiac
fibrosis (eg, “myocardial fibrosis”), or known ECG identification
methods of fibrosis (eg, “Selvester score”), and ML methods
(eg, “deep learning”). The strategy was adjusted to the
constraints of the respective database. Details of the search
strategy used for each database are available (Multimedia
Appendix 2). The search was conducted in October 2024. All
search results published before October 2024 were included.

Selection Process
For all stages of review management, the Cochrane review
management software Covidence was used [35]. With respect
to the review of literature pertaining to the use of ECG-ML for
the detection of cardiac fibrosis, the identified literature
underwent abstract and full-text review to determine eligibility
for data extraction by 3 reviewers (JH, HJ, and CO), and data
extraction was conducted by 3 reviewers (JH, AM, and HJ).
Conflicts were resolved in a discussion between the authors.

Data Extraction
Data were tabulated from each included study by one author
and then verified by the second author (JH, HJ, and AM). Data
from multiple publications reporting the same study were
summarized in a single row.
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Data Items
Data were collected on study design, model design, and
outcomes. Study design data included clinical population type,
data sources, total sample size, sample size with confirmed scar,
and modality used to confirm cardiac fibrosis. Data on model
design included input data type, ML models used,
best-performing model, validation strategy, and feature selection.
Finally, outcomes included model sensitivity, specificity,
positive predictive value, negative predictive value, accuracy,
and the AUC.

Data Synthesis
These data were presented in a tabulated form and a synthesis
that grouped the studies by model type, including classical ML
models, ensemble models, and deep learning models.

Ethical Considerations
This review relies exclusively on publicly available information
that is legally accessible to the public. Accordingly, no ethics
approval was required to conduct this research per the Panel on
Research Ethics of the government of Canada [36]. We further
established that all included studies had ethics approval or
acknowledgment of ethics waiver.

Results

Overview
A review of the identified literature revealed that the application
of ECG-ML for the detection of cardiac fibrosis has been
limited, with only 12 publications representing 11 studies to
date [37-48]. Full screening data are available in the PRISMA
diagram (Figure 1) [49]. An overview of features and outcomes
of these studies is summarized in Tables 1 and 2 and visualized
in Figure 2 [37-48]. Within ML, models are algorithms or
mathematical representations that learn patterns and
relationships within data to make predictions or decisions based
on new, unseen data. Of the identified studies, all 11 (100%)
studies used supervised learning, an approach in an ML model
is trained to map input observations (ECG tracings) to the
corresponding “labeled” outputs (CMR identified scar or fQRS).
In this sense, the ML model learns patterns that may exist in
training data to predict outcomes in a “supervised” fashion. The
trained model is then used to classify (or predict) new
never-before-seen test inputs from a left-out testing dataset.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 [49] diagram of the identification, screening, and
inclusion for the review of electrocardiogram machine learning (ECG-ML) use in the detection of cardiac fibrosis.
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Table 1. Summary of methods of studies that use machine learning to identify cardiac scars from electrocardiogram (ECG) data. Within the study
design, N refers to the number of ECGs or vectorcardiograms included in the study, and n scar refers to the number of cases with confirmed scarring
using a method other than ECG. The number of sources of study population, data sources, is included. Scar modality refers to the method used to confirm
cardiac scarring. Classical models include logistic regression (LR), support vector machine (SVM), k-nearest neighbor (KNN), naive Bayes (NB), and
decision tree (DT). Ensemble models include TreeBagger, random forest (RF), and Extreme Gradient Boosting (XGBoost). Deep models include
convolutional neural network (CNN) and multilayer perceptron (MLP).

Model designStudy designStudy

Features,
n

Development
and validation
strategy

Best mod-
el

All models
used

Included de-
mographics

Scar modalityScar, n
(%)

NData
sources

Population

2510-fold CVcSVMSVMbNoneLGE-CMRa158
(60.7)

2603General
cardiology

Dima et al [37],
2013

44—eLRLRSex and ageLGE-CMR142
(43.7)

3255LBBBdWieslander et al
[47], 2018

55-fold CVSVMSVMNoneLGE-CMR25 (58) 431HCMfMelgarejo-
Meseguer et al
[39], 2018

23Bootstrap re-
sampling
(B=100)

SVM (for
fQRS);
NB (for
fibrosis)

SVM,
KNN,
MLP, and
DT

Sex and ageSimulated
fQRS, fQRS,
or LGE-CMR

42
(fQRS;
53); 130
(CMR;
43.3)

80

(fQRSg);
300
(CMR)

4HCMMelgarejo-
Meseguer et al
[48], 2019

1010-fold CVSVMSVM,
KNN, NB,
and Tree-
Bagger

NoneECG (fQRS)—6161ICDhGoovaerts et al
[40], 2019

— 5-fold CVRFRFNoneComputation-
al simulation
model

42 (100) 421Cardiac
simulations

Gemmell et al
[41], 2020

— 6-fold CVCNNCNNSex and ageLGE-CMR—1141CADiGumpfer et al
[42], 2021

1010-fold CVSVMSVMSex and ageECG (fQRS)—19322ICDVilla et al [43],
2022

155-fold CVXGBoostLR, NB,
SVM, RF,
XGBoost

NoneComputation-
al simulation
model

10,000
(50)

20,000110 LBBB
patients for
20,000 sim-
ulations

Khamzin [45],
2022

—90:10 splitCNNCNNSex, age,
and ethnicity

LGE-CMR21 (24)871MVPjTison et al [44],
2023

—5-fold CVMultitask
CNN
(ResNet)

Multitask
CNN
(ResNet)

Sex and ageLGE-CMR3809
(27.7)

13,7071CADBoribalbu-
rephan et al
[46], 2024

aLGE-CMR: late gadolinium enhancement cardiac magnetic resonance imaging.
bSVM: support vector machine.
cCV: cross validation.
dLBBB: left bundle branch block.
eNot reported.
fHCM: hypertrophic cardiomyopathy.
gfQRS: fragmented QRS.
hICD: implantable cardioverter-defibrillator.
iCAD: coronary artery disease.
jMVP: mitral valve prolapse.
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Table 2. Summary of outcomes of studies that use machine learning to identify cardiac scar from electrocardiogram data. The outcomes reported are
those of the most successful model from each study. The outcomes are first reported for validation sets.

OutcomesStudy

AUCcAccuracyNPVbPPVaSpecificity (%)Sensitivity (%)

—89.2——d91.287.3Dima et al [37], 2013

—82.1——87.576.0Panagiotou et al [38], 2013

0.72———8454Wieslander et al [47], 2018

—76.966.785.780.075.0Melgarejo-Meseguer et al [39], 2018

—93 (for fQRS);
70.1 (for fibrosis)

93 (for fQRS);
65.5 (for fibrosis)

98 (for fQRS);
82.1 (for fibrosis)

99 (for fQRS);
90.5 (for fibrosis)

94 (for fQRSe);
47.4 (for fibrosis)

Melgarejo-Meseguer et al [48], 2019

0.9488.0——89.086.0Goovaerts et al [40], 2019

0.38-0.9776.7-86.7————Gemmell et al [41], 2020

0.8978.078.284.284.370.0Gumpfer et al [42], 2021

0.93——86.092.076.0Villa et al [43], 2022

0.8376.0——9558.0Khamzin [45], 2022

0.75———45.1100.0Tison et al [44], 2023

0.8483.1——91.259.9Boribalburephan et al [46], 2024

aPPV: positive predictive value.
bNPV: negative predictive value.
cAUC: area under the receiver operating characteristic curve.
dNot reported.
efQRS: fragmented QRS.

Figure 2. Taxonomy of machine learning models used for the detection of myocardial fibrosis across various study populations, categorized into
classical, ensemble, and deep learning models. The figure presents the sensitivity, specificity, and accuracy percentages for the best-performing models.

Supervised learning lends itself well to diagnostic applications,
where data can be classified as pathological or benign. In this
case, the training data would be hand-labeled as pathological
or benign by a third party, often a physician, establishing the
ground truth. This ground truth serves as the definitive reference
against which the ML model’s predictions are compared to
evaluate accuracy. Models trained under the supervised learning
approach can be further subclassified into classical models,
ensemble models, and deep learning models, and are reported

in these subcategories below. Visual representations of examples
from each subtype can be found in Figure 3 [50,51]. Some
studies applied a single model, while others compared several
types of models. The translational application of ML in health
care unfolds through various stages, including problem
identification, dataset curation and preparation, model
development (ie, model training and tuning), model validation,
and deployment and monitoring, as depicted in Figure 4 [52].
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Figure 3. Simplified visual representation of classifier models used in machine learning for cardiac fibrosis detection from electrocardiograms (ECGs).
Support vector machines encompass a family of algorithms that identify an optimal hyperplane segregating different classes of data, thereby defining
a decision boundary amid data points [50]. Ensemble models, such as TreeBagger, perform classification by creating a collection of multiple bagged
tree models, reducing the overfitting often seen with individual decision trees through model averaging. Deep learning, of which convolutional neural
networks (CNNs) are a subclass, mimics human cognitive processing with a layer-based organization, with each layer housing nodes or neurons that
allocate weight to input data and subsequently relay output data to successive nodes within the network to define a decision boundary. Unlike classical
models, CNNs possess the ability to extract important features without human guidance (ie, automated feature extraction) to identify predictive patterns
even with complex datasets, such as ECG data [51].

Figure 4. Summary of major steps in the development and implementation of a machine learning (ML) model based on Chen et al [52], with
electrocardiogram (ECG) data as a case example. AI: artificial intelligence; AUC: area under the receiver operating characteristic curve; LGE-CMR:
late gadolinium enhancement cardiac magnetic resonance.
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Classical Models
Classical ML models rely on structured data and manually
selected features for classification tasks. This category includes
models such as logistic regression (LR), support vector machine,
k-nearest neighbor, and naive Bayes. Among the included
studies, 8 out of 11 (73%) applied classical models. Six (55%)
of 11 studies implemented SVMs, which are commonly used
for handling high-dimensional data and performing classification
tasks [37-40,43,48]. In addition, 3 (27%) of 11 studies used
naive Bayes models, 2 (18%) of 11 studies used KNN, 2 (18%)
of 11 studies used LR, and 1 (9%) of 11 studies used decision
trees [40,45,48].

Panagiotou et al [38] developed an SVM model with the
potential application of point-of-care screening for cardiac
fibrosis from VCG. They used 3 datasets, which cumulatively
gave a dataset of 260 ECGs, of which 158 (60.8%) were from
patients with CMR-confirmed fibrosis [38]. The data sources
included the University Hospital Southampton (154 records,
108 with fibrosis), the PTB Diagnostic ECG Database (54
patients, 50 with fibrosis), and additional healthy controls from
the PTB database (52 patients without fibrosis and CMR data)
[53,54]. Preprocessing involved ECG transformation to VCG
where applicable, ECG baseline removal, and wave boundary
determination [55,56]. Feature selection initially included 9
features from all 3 planes of the VCG. They then reduced to the
top 10 features using the SVMAttributeEval algorithm [57].
The best-performing SVM model achieved an accuracy of
82.36%, a sensitivity of 84.31%, and a specificity of 77.36%.
Subsequently, Dima et al [37] refined the feature selection
process using template-based, time-based, and statistical ECG
features and spatial features from VCG, ultimately identifying
344 initial features which were narrowed to 25 key features for
an SVM which achieved an accuracy of 82.1%, the sensitivity
of 76%, and specificity of 87.5%, when tested across different
databases.

Wieslander et al [47] assessed the ability of an LR model to
improve the original manual Selvester scoring for individuals
with left bundle branch block (LBBB). Data were amalgamated
from 4 international institutions for individuals who had both
ECG and LGE-CMR records. Across the 4 sites, they included
325 patients, 142 (43.7%) of whom had CMR-confirmed
fibrosis. Data processing involved custom wave-processing
software to identify waveform changes. They evaluated LR
models for the detection, quantification, and localization of
cardiac fibrosis by models that incorporated features from the
manual LBBB Selvester score. Results showed that detection
was improved in the LR to the manual score while quantification
and localization were not improved. The LR had a sensitivity
of 54%, a specificity of 84%, and an AUC of 0.72, while the
manual score achieved an AUC of 0.60.

Melgarejo-Meseguer et al [39] trained an SVM for classifying
the presence of fibrosis in individuals with hypertrophic
cardiomyopathy (HCM) using 12-lead ECG data. The model
was developed using a dataset of 43 ECGs selected by the
research team, with 25 (58%) cases confirmed to have fibrosis
by CMR. Data preprocessing included noise reduction with
cubic splines, notch filters, QRS extraction, beat template

creation, and grouping of beat templates into regional categories
(lateral, anteroseptal, and inferior). Signal transformation was
conducted using independent component analysis or
principal-component analysis to isolate fibrotic signals. Feature
extraction involved manually selecting statistical parameters of
the QRS complex, such as power, SD, skewness, kurtosis, and
number of local maxima, which were ranked to form a feature
vector. The best-performing SVM, using principal-component
analysis sorted by lowest SD, achieved an accuracy of 76.92%,
a sensitivity of 75%, and a specificity of 80% for classifying
fibrosis.

This work was then expanded upon in the study by
Melgarejo-Meseguer et al [48] where 6 different linear and
nonlinear classic and deep models were trained on 4 different
databases. Of the 4 databases, 2 included simulated fQRS
records, one database included 43 individuals with HCM and
labeled fQRS, and one database included 300 ECGs of
individuals with HCM who had CMR scar. The decision tree
model achieved accuracies of 0.79 to 0.83 across the databases
used. The SVM model achieved the highest performance for
fQRS detection as an indirect measure of cardiac fibrosis, with
0.94 sensitivity, 0.88 specificity, 0.89 positive predictive value,
0.93 negative predictive value, and 0.91 accuracy. The naive
Bayes model achieved the highest performance for direct fibrosis
identification, with 0.47 sensitivity, 0.91 specificity, 0.82
predictive positive value, 0.66 negative predictive value, and
0.70 accuracy.

The included studies by Villa et al [43] and Goovaerts et al [40]
are also closely connected, with Villa et al [43] validating and
extending the original methods developed by Goovaerts et al
[40] using external data. In the initial study, Goovaerts et al
[40] developed an automated method for detecting and
quantifying fQRS, an ECG marker associated with myocardial
fibrosis. They used a dataset of 616 patients in normal sinus
rhythm who had undergone ECGs before implantable
cardioverter-defibrillator implantation. The presence of fQRS
was labeled by 5 clinical observers based on predefined criteria,
and cases with complete interobserver agreement were used as
the ground truth for training the model. Data preprocessing
involved noise reduction and voltage normalization, followed
by segmentation of QRS complexes to accurately estimate fQRS
and minimize misinterpretation from oscillations and noise in
the signal, while also excluding irregular heartbeats. Features
were independently extracted from each lead, using techniques
like variational mode decomposition, phase-rectified signal
averaging, and the count of peaks in the QRS complex. A set
of 10 features was used to train an SVM, which achieved a
sensitivity of 76% and a specificity of 92% for detecting fQRS,
outperforming other models such as k-nearest neighbors, naive
Bayes, and TreeBagger (as described in the Ensemble Models
section).

Building on these findings, Villa et al [43] validated the method
on a larger, multicenter dataset from 2 sources. The first dataset
included 673 individuals before implantable
cardioverter-defibrillator implantation, with 616 in sinus rhythm
and 57 in atrial fibrillation. The second dataset comprised a
retrospective set of 1259 ECGs from the European Comparative
Effectiveness Research to Assess the Use of Primary
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ProphylacTic Implantable Cardioverter Defibrillators project,
where fQRS was annotated independently by 2 clinicians. Villa
et al [43] applied the same SVM-based approach to these
datasets, achieving high specificity (92%) and a positive
predictive value (86%) in the primary cohort, with robust
performance in both sinus rhythm and atrial fibrillation settings.
This validation of external data demonstrates the effectiveness
and generalizability of the original method by Goovaerts et al
[40] for identifying an indirect marker of fibrosis.

Ensemble Models
Ensemble models combine multiple base models to function as
a single, more robust model. By aggregating the predictions of
various individual models, ensemble techniques like random
forests (RFs) and gradient boosting aim to reduce overfitting
and improve generalization to unseen data. These methods are
particularly effective in handling high-dimensional data and
capturing complex interactions within the dataset. Three (27.3%)
studies reviewed applied ensemble models, of which 2 (18%)
used RFs, 1 (9%) used gradient boosting, and 1 (9%) used
TreeBagger [40,41,45].

Goovaerts et al [40] explored the use of an ensemble model,
specifically TreeBagger, to detect fQRS in ECG signals. The
study aimed to compare the performance of this ensemble model
against classical ML approaches such as SVM, KNN, and naive
Bayes (as described in the previous section). The TreeBagger
model underperformed compared to other models in this study,
achieving an AUC of 0.89, sensitivity of 64%, and specificity
of 90% and it was less effective than SVM, which achieved an
AUC of 0.95.

Khamzin [45] further explored the application of ensemble
models by using both RF and Extreme Gradient Boosting
(XGBoost) classifiers to detect myocardial scars based on
simulated 12-lead ECG data. The study used a finite element
model to simulate 20,000 ECGs from 10 patients with LBBB,
half (50%) of which were simulated to have cardiac fibrosis.
The data underwent principal-component analysis for
dimensionality reduction, retaining components that explained
up to 90% of the variance. The RF classifier achieved moderate
performance with an AUC of 0.78, sensitivity of 47%, and
specificity of 92%. In comparison, the XGBoost classifier
outperformed the RF with an AUC of 0.83, sensitivity of 58%,
and specificity of 95%. These results should be interpreted with
caution as the study simulated high-dimensional and complex
data based on a very small sample size.

Gemmell et al [41] developed an RF to detect and localize the
presence, extent, and specific location of cardiac fibrosis within
computationally generated models of the heart. The study
focused on distinguishing fibrosis localized to either the left
ventricle or the interventricular septum using features extracted
from signal-transformed simulated ECG data. Initial model
performance using an ensemble of 20 decision trees
demonstrated promising results, with an accuracy of 76.6% for
left ventricle localization and 83.33% for septal localization
during 5-fold cross-validation. This accuracy improved
significantly when the number of trees was increased to 1000,
yielding an accuracy of 83.33% for left ventricle localization
and 86.66% for septal localization. Leave one out

cross-validation, also known as k-fold validation, a strategy in
which each data point is used as a validation set once, produced
an accuracy of 90.71% for left ventricle localization and 93.57%
for septal localization. These findings highlight the capability
of RFs to effectively leverage complex feature sets for precise
cardiac fibrosis localization in computational models, suggesting
its potential applicability in clinical settings where accurate
fibrosis mapping is crucial.

Deep Learning
Deep learning models, which use deep neural networks (DNN),
offer advanced capabilities for analyzing complex temporal
patterns and relationships within ECG data that traditional
methods might miss. Convolutional neural networks (CNNs)
are a subtype of DNNs designed for tasks involving spatial data.
By leveraging deep learning models like CNNs, these models
can extract nuanced features from high-dimensional datasets,
leading to improved detection and classification of cardiac
abnormalities. Of the included studies 4 out of 11 (36%)
evaluated deep learning models [42,44,46,48].

Melgarejo-Meseguer et al [48] applied a multilayer perceptron
(MLP) model, which is a type of feedforward neural network.
As opposed to true deep models, which have many hidden
layers, MLP has only one hidden layer; however, it is
categorized here as a deep learning model for readability
purposes. This model was used for ECG automated detection
of both fQRS and cardiac fibrosis, achieving an accuracy of
0.78 across the databases used. In comparison to the classical
models used in this study, the MLP model performed poorly,
and therefore complete outcomes were not reported.

Gumpfer et al [42] evaluated a deep learning model for the
automated detection of cardiac fibrosis using a dataset of ECGs
and CMRs from 114 patients with known or suspected coronary
artery disease. Included patients underwent both CMR and ECG
to be eligible for the study. ECG data were preprocessed through
cropping, scaling, and augmentation to compensate for the
limited number of records. This augmented data, along with
clinical data encoded into one-hot vectors, were used to train a
CNN model architecture originally proposed by Strodthoff and
Strodthoff [58] for identifying acute myocardial infarction. The
model was further expanded with additional layers to produce
a probability distribution for detecting cardiac fibrosis. The
CNN model achieved a mean AUC of 0.81, sensitivity of 70%,
specificity of 73%, and accuracy of 70.2% on a patient-level
basis. When combined with clinical features, the performance
of the model improved significantly, reaching a mean AUC of
0.89, a sensitivity of 70%, a specificity of 84.3%, and an
accuracy of 78%. These results demonstrate the potential of
CNNs, especially when combined with clinical data, for the
accurate detection of cardiac fibrosis.

Tison et al [44] developed a deep learning model to identify
patients with mitral valve prolapse (MVP) at risk for arrhythmias
and myocardial fibrosis using ECG data. The study included
1349 patients with MVP, where ground truth was established
using echocardiograms and CMR to confirm MVP and fibrosis.
The CNN model was trained on preprocessed ECG data,
including noise reduction and signal normalization, and achieved
high performance with an AUC of 0.87 for detecting fibrosis.
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Finally, Boribalburephan et al [46] investigated the use of
image-based classification for detecting cardiac fibrosis and left
ventricular ejection fraction below 50% using a dataset of 14,052
ECGs from 13,707 patients in Thailand, 27.11% of whom had
cardiac fibrosis. The data, collected retrospectively, included 2
ECG formats: nongrid (old format) and grid (new format), with
additional clinical features such as age, sex, smoking history,
diabetes, hypertension, and dyslipidemia. Preprocessing
involved converting PDF ECGs into images, removing grid
lines when necessary, and cropping the images to maintain
consistency across heartbeats. The study used 8 deep learning
models, evaluating both single- and dual-task frameworks on
the nongrid and grid data formats, and models combined with
clinical features. The top-performing model for detecting cardiac
fibrosis achieved an AUC of 0.84 for the old-format dataset and
0.81 for the new-format dataset. In comparison, cardiologists
achieved lower AUCs of 0.63 and 0.66, respectively,
highlighting the superior performance of the deep learning
model.

The 11 studies represent promising initial strides toward the
development of ML algorithms for clinical cardiac fibrosis
detection from ECGs. Nevertheless, a thorough examination
reveals substantial limitations within the current body of work
that must be addressed in future studies.

Discussion

Principal Findings
In summary, our review identified 11 studies investigating the
application of ML to ECG data for the detection of cardiac
fibrosis. These studies used a variety of ML approaches,
including classical models (8 studies), ensemble models (3
studies), and deep learning models (4 studies). SVMs were the
most used classical model, while CNNs were prevalent among
deep learning approaches. The best performance metrics varied
widely across studies, with AUCs ranging from 0.72 to 0.97.
The best-performing models achieved accuracies between 70%
and 93% in predicting cardiac fibrosis. However, these results
should be interpreted cautiously due to significant limitations
in study designs, including small sample sizes, lack of diverse
cardiac populations, and limited external validation. The
reviewed studies demonstrate the potential of ML in detecting
cardiac fibrosis from ECG data but also highlight the need for
larger, more robust studies with diverse populations and rigorous
external validation to establish the clinical utility of these
approaches.

Strengths in Comparison to Prior Work
The studies reviewed demonstrate several notable strengths in
the application of ML to ECG data for cardiac fibrosis detection,
particularly when compared to traditional manual methods.
Researchers have explored a diverse range of ML techniques,
including classical models like SVMs, ensemble methods such
as RFs, and advanced deep learning approaches like CNNs,
allowing for valuable comparisons between different
methodologies. This diversity in approach and computational
bolstering offers potential improvements over manual
interpretation methods such as fQRS analysis and Selvester
scoring. While fQRS meta-analyses reported a pooled sensitivity

of 68.4% and specificity of 80.5%, some ML studies achieved
impressive performance metrics, with AUCs reaching up to
0.94 and accuracies as high as 89%, suggesting superior
diagnostic accuracy. Moreover, ML models address the
subjectivity inherent in manual methods, which are susceptible
to interobserver variability and diagnostic errors.
Boribalburephan et al [46] found that their deep learning model
outperformed cardiologists in ECG-based detection of cardiac
fibrosis (AUC 0.84 vs 0.63-0.66). Once trained, ML models
provide consistent and objective assessments, potentially
reducing the risk of misinterpretation. The automated nature of
ML analysis also offers a significant advantage in processing
large volumes of ECG data efficiently, a crucial benefit given
the time-consuming nature of manual interpretation by
clinicians. Perhaps most importantly, ML models have
demonstrated the ability to identify novel patterns in ECG data
that may be difficult to discern through traditional
human-derived methods, potentially uncovering new indicators
of cardiac fibrosis. Several studies, such as that by Gumpfer et
al [42], showed improved performance by combining ECG data
with clinical features, highlighting the potential of ML to
integrate multiple data sources for a more comprehensive
analysis. This multimodal approach allows a more nuanced
understanding of cardiac fibrosis, potentially leading to more
accurate diagnoses and better patient outcomes. These strengths
collectively underscore the promising potential of ML in
ECG-based cardiac fibrosis detection, offering a path to
overcome the limitations of traditional methods and providing
a solid foundation for future research and clinical applications
in this field.

Limitations

Study Design Limitations
Of the reviewed studies, 5 had sample sizes of 42, 43, 80, 87,
and 114, which are unlikely to be representative of the general
population, and are technically problematic for ML. Recently,
ML sample size criteria have been proposed, such as requiring
a minimum of 10 samples per feature for classical models, an
effect size ≥0.5, and an accuracy ≥80% [59,60]. The issue of
sample size is also important as it concerns overfitting, a
phenomenon where models trained on small sample sizes may
become overly specialized to predict characteristics unique to
that dataset. This issue is further compounded by the exclusion
of critical biological variables such as sex, gender, age, and
ethnicity, which are known to influence the presentation and
progression of cardiac disease. The lack of consideration for
these demographic factors can result in biased models that are
overfit which will ultimately limit their clinical utility.

To address the challenge of small sample sizes in clinical
settings, one potential approach is to apply transfer learning.
This involves initially training a model on a large dataset and
then fine-tuning it on a smaller one. This way, the model can
learn fundamental properties of ECG signals that are transferable
across different datasets, such as distinguishing between normal
and abnormal ECG signals. Transfer learning is now feasible
due to the accessibility of extensive public ECG datasets, such
as the PTB-XL database [54]. We anticipate that future studies
will increasingly adopt this methodology, thereby improving

JMIR Cardio 2024 | vol. 8 | e60697 | p. 10https://cardio.jmir.org/2024/1/e60697/
(page number not for citation purposes)

Handra et alJMIR CARDIO

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the reliability and generalizability of ML models in health care
applications.

Consideration must also be given to the generalizability of both
the study design and model development. With cardiac fibrosis
exhibiting multifaceted characteristics across various conditions,
broadening the spectrum of cardiology patients used for model
training, rather than focusing solely on those with specific
diagnoses, enhances generalizability. Of the reviewed studies,
only Dima et al [37] and Panagiotou et al [38] included a broader
cohort which included a variety of cardiac conditions. In
addition, integrating dimensions of sex, age, and race into health
care ML algorithms is essential for mitigating biases that could
lead to diagnostic errors. This becomes particularly salient for
conditions necessitating sex-, age-, and race-based risk
stratification. While Wieslander et al [47], Melgareio-Meseguer
et al [48], Gumpfer et al [42], Villa et al [43], and Tison et al
[44] reported some patient demographics, it remains ambiguous
how these demographics were included as input features in the
development of the models. The absence of patient
demographics integration, coupled with the exclusion of healthy
controls in most studies, undermines the representativeness of
the model to the broader population. The integration of other
clinical information as well as a longitudinal analysis of change
in each patient’s ECGs may further ML capacities for
identification of fibrosis [60].

Data sources also contribute to inconsistency and lack of
comparability across studies. Of the included studies, 2 studies
incorporated VCG analysis [37,38,41]. Despite its lesser
prevalence compared to ECG, VCG offers invaluable insights
into the electrophysiological dynamics of the heart by providing
a 3D representation of cardiac electrical activity derived from
3 leads, either directly acquired or mathematically extrapolated
from the conventional 12-lead ECG [61]. Notably, the VCG
has demonstrated heightened sensitivity in diagnosing specific
pathologies, including atrial enlargement, right ventricular
hypertrophy, and intraventricular conduction disorders, while
affording superior spatial localization for informing and
evaluating interventions [61]. Another technology, body surface
potential mapping (BSPM), which involves using a greater
number of electrodes across the thorax to provide
higher-resolution electrophysiological representations, is being
increasingly explored in AI research [62]. Nevertheless, the
general clinical underutilization of VCG and BSPM persists in
contrast to the widespread adoption of ECG, thereby
constraining the interpretability and application of these
technologies beyond specialist cohorts. However, future
endeavors may harness VCG or BSPM input for computational
models, potentially enriching diagnostic precision, and clinical
insights.

Data undergoes preprocessing before input into ML models, a
phase that entails using tailored techniques to optimize the data
for improved learning effectiveness. This review of relevant
studies revealed varying degrees of detail in describing
preprocessing steps, with only some studies providing the
requisite technical depth essential for reproducibility. Broadly,
common preprocessing techniques encompass noise reduction,
normalization, scaling, augmentation, transformation to VCG
representations, and QRS segmentation. While the intricacies

of these strategies surpass the technical scope of this review,
details are available in the referenced studies.

Transparency in data processing is especially relevant when
considering ECG artifacts. Sources of nonbiological noise in
ECG signals, such as motion artifacts, electrode contact issues,
and electrical interference, pose additional challenges. These
artifacts can obscure the true cardiac signals, leading to
inaccurate feature extraction and erroneous model predictions
if not properly addressed during preprocessing. Oversight of
these confounding variables risks creating models that appear
to perform well in controlled settings but fail to deliver reliable
results in real-world clinical environments. These confounding
nonbiological signals may be more common in ECGs drawn
from clinical environments due to a lesser degree of control
over the circumstances where the reading was taken [63].

Accounting for all these factors is essential to ensure that models
are being trained from relevant ECG features and to avoid study
population-based biases. One possibility to address this is to
adopt standardized preprocessing pipelines and reporting
practices that could improve comparability across studies and
facilitate external validation. Future research should prioritize
the development of models that are not only accurate but also
interpretable, ensuring that they can be reliably applied across
various patient populations and clinical contexts. Various
electrophysiological technologies, such as VCG or BSPM, may
be considered either in conjunction with or as alternatives to
ECG to furnish input data. A detailed account of data collection
and processing methodology is needed for reproducibility, and
the use of external validation using a dataset from a different
institution can further improve model generalizability.
Addressing these challenges will be crucial for the successful
integration of ML-based ECG analysis into clinical practice,
enabling more equitable and comprehensive methods for cardiac
fibrosis detection.

ML Model Limitations
Exact model architectures were not consistently provided in the
reviewed publications; however, the general limitations of each
model type can be considered. Eight of the 11 studies used
classical models [37-41,43,47,48], the most common being
SVM, which was used in 6 of the studies [37-40,43,48]. Manual
feature extraction is a major limitation in classical models,
compared to the automatic feature extraction capabilities of
deep learning. Manual feature extraction entails that models are
trained to only evaluate features that are important to the human
observer rather than intrinsic features that are mathematically
more significant indicators of fibrosis. Furthermore, traditional
SVMs may encounter computational limitations with
high-dimension datasets, necessitate supplemental algorithms
for handling time-series data, and may lack nuanced recognition
of fibrosis characteristics. While DNN models are gaining
prominence in ML for ECGs [51], we found only 4 DNN studies
for cardiac fibrosis detection [40,43,46,52]. Mazomenos et al
[56] published a conference abstract highlighting their use of
deep learning for ECG-based detection of cardiac fibrosis in a
cohort of 8813 patients to achieve an AUC of 80% and precision
of 0.64; however, the brevity of the abstract prevented its
inclusion as a primary study in this review. The use of deep
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learning methods, as demonstrated by Gumpfer et al [42], Tison
et al [44], Wieslander et al [47], and Boribalburephan et al [46]
offers several advantages for ECG data analysis, including
hierarchical feature learning algorithms capable of distinguishing
between simple (eg, waveforms) and intricate (eg, arrhythmias)
patterns, automated feature extraction, adaptability to large and
intricate datasets, adeptness in processing temporal data, and
the ability to provide nuanced outputs, thereby enhancing
clinical applicability.

To ensure the reliability of a model’s diagnostic capacity, it is
essential to consider the validity of the ground truth, which
constitutes the clinical basis for classifying cases into “fibrosis”
versus “no fibrosis.” LGE-CMR is clinically considered the
gold standard for identifying cardiac fibrosis; therefore,
LGE-CMR should be the ground truth in model development
using the ECG for fibrotic detection. Goovaerts et al [40], Villa
et al [43], and Melgarejo-Meseguer et al [48] used fQRS as a
proxy for cardiac fibrosis. Given the diagnostic limitations of
fQRS, ML models that predict fibrosis based on fQRS
approximations have limited diagnostic value, despite impressive
outcome measures.

A further critical consideration in the assessment of ML models
is the choice of model development and validation strategies.
Ten of the 11 (91%) studies used cross-validation, a statistical
technique in which the dataset is iteratively split into subsets
for training, tuning, and evaluation. This leaves only a small
subset of the original dataset for testing with a potentially
skewed distribution of patient characteristics, which limits
confidence in outcome measures. Further prioritization of
validation using external data is necessary to improve the
model’s generalizability and reduce the risk of overfitting. One
of the 11 (9%) studies used bootstrapping. Bootstrapping is a
technique that creates multiple training datasets by sampling
with replacement from the original data, providing robust error
estimates and CIs. However, it can be computationally expensive
and may underestimate errors if the original dataset contains
biases or is not representative of the true population distribution.

Embracing deep learning models coupled with large datasets
that capture population diversity presents a promising avenue
for addressing the limitations and enhancing the accuracy and
clinical relevance of ML models for ECG fibrosis detection.
Yet, there is a demand for further progress in harmonizing deep
learning models with human judgment, as deep learning, unlike
traditional ML models, is unable to fully elucidate the
significance of extracted features in a manner that can be readily
interpreted by humans [64]. However, methods that combine
both deep learning and traditional ML classifiers are being
increasingly applied to improve the interpretation of the models’
decisions. For example, the study by Tison et al [44] used a
CNN to extract patient-level ECG features that were used as
input to the interpretable gradient boosting model.

Limitations in Outcomes and Reporting
Across the 11 studies examined, a consistent pattern emerges:
impressive outcome metrics are reported, such as high values
for sensitivity, specificity, positive and negative predictive value,
accuracy, and AUC. However, a closer examination reveals
inherent challenges that hinder the clinical interpretation of

these outcomes. Most of the studies, with the exception of those
by Dima et al [37], Panagiotou et al [38], and Villa et al [43],
solely present outcome metrics from internal cross-validation,
without the use of external datasets. This restricts the scope of
assessing the models’ generalizability and their relevance
beyond the specific populations on which they were trained. A
secondary limitation pertains to the incomplete reporting of
outcome metrics which detracts from the holistic understanding
of the models’ performance.

These limitations underscore a pervasive issue within the realm
of health care ML research: the lack of consistency and
transparency in outcome reporting. The Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis [65] guideline is being adapted to produce an
AI-specific version [66] as recent assessments of health care
ML studies revealed significant inconsistencies in reporting
[67] and terminology [68]. As research in ML in ECG detection
of cardiac fibrosis advances, reporting excellence must be
achieved to fortify the scientific rigor and clinical utility of
developed models.

Review Limitations
This scoping review has several limitations to consider. The
relatively new and rapidly evolving nature of ML applications
in ECG-based cardiac fibrosis detection means that despite
thorough searches in multiple databases and outreach to authors,
some relevant work may have been missed. The exclusion of
conference abstracts without full papers, while necessary for
ensuring methodological detail, may have omitted some
early-stage research. The heterogeneity of the included studies,
particularly in ML techniques, methods for establishing ground
truth for cardiac fibrosis, and differences in methods
documentation and outcome reporting posed challenges for
direct statistical comparisons and meta-analysis. To
accommodate a clinical audience, this review omits some
technical details; however, methodological specifics of the ML
approaches can be found in the original studies. In addition, the
rapid pace of technological advancement in both ECG
technology and ML algorithms means that earlier studies may
not reflect the current state-of-the-art. Finally, reviewer bias
can influence the selection, interpretation, and synthesis of
studies, potentially introducing bias into the overall findings of
a review.

Considerations for Clinical Implementation
The current literature underscores both the promise and
limitations of ECG-ML for detecting cardiac fibrosis. Although
these studies represent pioneering efforts, their restricted sample
sizes, absence of prospective trials, and limited diversity in
patient demographics raise concerns about the generalizability
and clinical utility of the findings. To translate this research
into clinical practice, future studies should prioritize prospective
randomized trials and the incorporation of broader demographic
cohorts to ensure that ML models can serve a wide range of
patients effectively. Furthermore, the use of more comprehensive
datasets and external validation will enhance model robustness
and reliability.
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In the context of CMR resource limitations [69], ECG-based
ML approaches present promising value. By guiding the
allocation of CMR imaging resources or possibly circumventing
the necessity for CMR, ECG-ML stands to enhance clinical
efficiency and accessibility in the identification of cardiac
fibrosis. When compared to manual methods, these emerging
ML methods may reduce workload, identify subtle and novel
patterns of fibrosis, and identify electrophysiologic-anatomical
correlations between ECG and CMR. Furthermore, ML models
may expand and expedite ECG-derived localization of fibrosis
which is important in the prognostication of cardiomyopathy.
A potential avenue for advancement lies in integrating
fibrosis-detecting ECG models with other ECG diagnostic
models to yield more comprehensive functional assessments.
For instance, an integrated ECG model may identify a specific
pattern of septal fibrosis as the cause of an observed conduction
block.

To maximize the potential of ML models for ECG analysis,
consideration must be made to their eventual implementation
in clinical practice. There are numerous clinical trials and
prospective evaluations of ML analysis of ECGs ongoing, but
few reports of routine clinical implementation of these models
[70,71]. Translational approaches to clinical implementation
must address a wide range of challenges, including professional
liability, systemic bias, surveillance and security, and integration
within existing technologies and workflows [72]. The authors
of a sepsis detection and management model, the first deep
learning model to be implemented into routine clinical practice,
outline steps to effective clinical implementation: workflow
analysis, new workflow design, model and infrastructure
development, integration and implementation, change
management, and evaluation [73]. Incorporating ECG-ML into
existing workflows requires careful consideration of both
technical and clinical factors. Models must be able to integrate
seamlessly with existing ECG infrastructure while enhancing
clinician decision-making. Given the highly sensitive nature of
cardiac fibrosis detection, clinicians must remain involved in
interpreting ML outputs, especially during the initial phases of
adoption. One promising approach is to combine ML-based
fibrosis detection with other ECG diagnostic models to create
more holistic assessments of cardiac function. For instance,
integrating ML models with diagnostic tools for arrhythmias
or conduction blocks can lead to more comprehensive
evaluations of heart health, enabling more tailored treatment
strategies.

Several barriers must be addressed before ECG-ML tools can
be fully integrated into clinical workflows. One critical challenge
is the need for high interpretability in ML models to ensure
clinicians can understand and trust the outputs. In addition,
practical concerns arise regarding the infrastructure required to
support these models, including seamless integration with
hospital electronic health record systems and ensuring robust
data privacy and security. The computational costs associated
with deep learning models remain significant, necessitating
careful resource allocations. Systemic issues like professional
liability and the mitigation of biases, especially regarding
underrepresented patient groups, must also be addressed. Ethical
considerations are crucial to prevent health care disparities from

being exacerbated by biased data and model outputs. Finally,
ensuring that these models comply with regulatory standards
and can be smoothly integrated into clinical settings will require
a multidisciplinary approach, combining technical advancements
with policy reforms. Overcoming these challenges will enable
ECG-ML models to enhance diagnostic accuracy while
minimizing the risk of unequal treatment outcomes or increased
clinician burden.

Future Directions
To address these limitations, we propose further work to develop
and train deep learning on large and diverse datasets to achieve
efficient and accurate identification of ECG patterns indicative
of cardiac fibrosis. While the current literature demonstrates
promising strides in applying ECG-ML for detecting cardiac
fibrosis, significant limitations must be addressed to advance
clinical adoption. Future studies should prioritize larger, diverse
cohorts, prospective randomized controlled trials, and
standardized methodologies to improve generalizability and
reproducibility. Standardizing data preprocessing and feature
engineering, along with adherence to reporting guidelines such
as the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis, will enhance
transparency and comparability. Incorporating external
validation with independent datasets and integrating additional
clinical data, such as longitudinal ECGs and advanced
electrophysiological technologies like VCG or BSPM, can
further refine these models. Collaboration between researchers
and clinicians is crucial to ensure ML tools are developed with
clinical relevance, enabling seamless integration into workflows
and enhancing diagnostic accuracy. With the progression of
research in this nascent domain, future qualitative and
quantitative meta-analyses of models will be essential in
facilitating deeper insights.

Conclusions
This review underscores the potential of ML models applied to
ECG data for detecting cardiac fibrosis, a key contributor to
cardiovascular disease. Traditional methods like fQRS and
Selvester scoring offer limited accuracy and require manual
interpretation, whereas ML techniques show promise in
enhancing diagnostic efficacy, accessibility, and precision.
Despite these advancements, current research is hampered by
small sample sizes, inconsistent methodologies, and a lack of
external validation, limiting clinical applicability. Future studies
should focus on larger, diverse cohorts, standardized data
processing, and external validation to improve model robustness.
The implementation of ML-based tools in clinical practice will
require randomized controlled trials to demonstrate their efficacy
and reliability in real-world settings, which is essential for
widespread clinical adoption and improved patient outcomes.
To enhance the applicability of ML-based ECG analysis, future
research should prioritize external validation studies across
diverse patient populations, ensuring that models are
generalizable and clinically relevant. In addition, the exploration
of underrepresented groups, including different races, ages, and
comorbidities, will be crucial for developing inclusive and
effective diagnostic tools. Addressing these gaps will accelerate
the clinical potential of ML techniques for noninvasive cardiac
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fibrosis detection and improve resource allocation in health
care. Ultimately, ML-based ECG analysis could expedite
noninvasive cardiac fibrosis detection; however, more research

is needed to fully realize its clinical potential and impact on
patient care.
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Abbreviations
AUC: area under the receiver operating characteristic curve
BSPM: body surface potential mapping
CMR: cardiac magnetic resonance
CNN: convolutional neural network
ECG: electrocardiogram
fQRS: fragmented QRS
LGE: late gadolinium enhancement
LR: logistic regression
ML: machine learning
MLP: multilayer perceptron
MVP: mitral valve prolapse
RF: random forest
VCG: vectorcardiogram
XGBoost: Extreme Gradient Boosting
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